

New Challenges in Virus Filtration: Continuous Manufacturing, Use of Virus Filter as an Upstream Barrier

23rd September 2022

Roya Dayani - Head of Product Management (Benelux, Nordics & South Europe) Asahi Kasei BioProcess Europe

CONFIDENTIAL © 2021 Asahi Kasei Bioprocess

- 1. Asahi Kasei Bioprocess Business Units
- 2. Continuous Virus Filtration
- 3. Virus Filtration as an Upstream Barrier

1

Asahi Kasei Bioprocess Business Units

3 CONFIDENTIAL © 2021 Asahi Kasei Bioprocess

2

Continuous Virus Filtration: Considerations for Implementation and Validation

Batch vs. Continuous Bioprocessing

Batch mode:

- > 6- or 7-unit operations, requiring different manufacturing lines and teams
- > When an issue occurs, easy to track back the problem
- > Time consuming: one batch ends, another begins
- Prone to human error
- Costs associated with inefficiencies, losses and contaminations

The Continuous Bioprocessing Promise

- Reduces or eliminates down time
- High-quality drug substance
- Flexible manufacturing allowing for faster production and reduction in drug shortages: higher efficiency
- > Limited laboratory testing, standardized quality control with the help of PATs
- Reduced energy needs and waste

Virus Filter Sizing Considerations for Continuous Processing

- Planova 20N and BioEX virus filters lines include 4.0 m², 1.0 m², 0.1 m², 0,01 m² and 0.001 m². Planova BioEX virus filters are also available in 0.0003 m².
- Potential choice of filter switch out or oversizing and smaller numbers of filters used.

Planova 20N

Asahi

Planova BioEX

Understanding The Design Space of a Virus Filter

How do virus filters work under continuous processing conditions?

How does continuous virus filtration impact viral clearance?

- Target: 4-5 days
- Low flow rates
- Low starting pressure
- High Loadings (L/m²)

Continuous Virus Filtration – Extended Processing Setup

Considerations: Priming PP7 bacteriophage/ MVM stability output Minimize pressure fluctuations Planova 20N and BioEX (0.001 m^2) Permeate collection Sample Ρ Waste Day Ø Collection: Pump Fresh Spike Load as needed Day 1 Filtrate Day 2 Filtrate Day 3 Filtrate 2 pump heads used Day 3 Load Filtrate Pool

Conditions:

- 0.025 g/L Human Gamma Globulin (HGG)
- 50 mM Acetate, 20 mM NaCl, pH 6.0
- Flow Rate: 1.2 mL/min
- Target Spike: 10⁶ PFU/mL
- Flux = 72 LMH
- Throughput = 6,900 L/m²

Lute et.al, Biotechnology Progress, January 2020

Sample	Log Titer (PFU/mL)				
·	BioEX – Run 1	BioEX – Run 2			
Load Range	5.9- 6.0	4.2-4.3			
Day 1 Filtrate	≤ 0.78	≤ 0.78			
Day 2 Filtrate	≤ 0.78	≤ 0.78			
Day 3 Filtrate	≤ 0.78	≤ 0.78			
Day 4 Filtrate	≤ 0.78	≤ 0.78			
Filtrate Pool	≤ - 0.22	≤ - 0.22			
LRV	≥ 6.1	≥ 4.5			

Long-term continuous virus filtrations can achieve acceptable virus removal

Lute et.al, Biotechnology Progress, January 2020

Sample	(log TCID ₅₀ /mL)
Load	5.9
Filtrate Fraction 1	≤ 0.5
Filtrate Fraction 2	0.8
Filtrate Fraction 3	≤ 0.5
Filtrate Pool	0.6
LRV	5.3

- Flux: 7.2 LMH (0.12 mL/min)
- Throughput: 500 L/m² (3 days)
- Target MVM spike: 10⁶ log TCID₅₀/mL

High LRV with low flow/pressure filtration on BioEX

Understanding the Effects of Load Variations on Virus Filter Performance

- Batch size: may be defined by the capacity of the filter used
- Filter capacity: largely dependent upon load
- □ Virus filter (VF) load variations:
 - Load concentration
 - Salt
 - Virus spike
 - pH
 - Impurities

Godawat, et. al, J. Biot., 2015

Dynamic Load Model

Load A: Baseline Conditions

Load B: Same as A with variable(s)

Effect of Protein, Salt and Virus Spike on Planova BioEX

Effective Virus Clearance is achieved when filters are run under recommended conditions

Sample	Run 1	Run 2				
Load (log PFU/mL)						
Load A	7.0	7.0				
Load B	7.9	7.9				
LRV						
Pre-Peak	> 7.0	> 7.0				
Peak Fraction 1	> 6.9	> 6.9				
Peak Fraction 2	> 6.9	> 6.9				
Peak Fraction 3	> 6.9	> 6.9				
Peak Fraction 4	> 6.9	> 6.9				
Peak Fraction 5	> 6.9	> 6.9				
Post-Peak Fraction 1	> 7.0	> 7.0				
Post-Peak Fraction 2	> 7.0	> 7.0				
Total PP7 Log PFU	9.	.0				

Asahi **KASFI**

BIOPROCESS

Lute et.al, Biotechnology Progress, January 2020

3

Virus Filtration as an Upstream Barrier

20 CONFIDENTIAL © 2021 Asahi Kasei Bioprocess

CGT processes can have high risk and minimal virus removal capability

Virus filtration is highly effective and robust at removing viral contaminants

BUT: Some CGTs are too big to pass through virus filters

How can Virus Filtration be used to improve pathogen safety of other CGTs?
 ✓ Downstream processing for select gene therapy products
 ✓ Upstream barrier

Contamination Events on Upstream

Asahi KASEI BIOPROCESS

Many contamination events are believed to come from raw materials.

Sources of Virus Contaminations in Raw Materials

Virus Contamination	Virus Family	Enveloped	Size (nm)	Source
Cache Valley Fever Virus	Bunyaviridae	Yes	80-100	Fetal Bovine Serum
Blue Tongue Virus	Reoviridae	No	65-75	Fetal Bovine Serum
Blue Tongue Virus	Reoviridae	Pseudo- enveloped	40	Possible insect transmission in testing lab
Bovine Viral Diarrhea Virus	Flaviviridae	Yes	40-70	Fetal Bovine Serum
Vesivirus 2117	Caliciviridae	No	35-40	Unknown
Equine Rhinitus A Virus	Picornaviridae	No	25-30	Equine Serum
Minute Virus of Mice	Parvoviridae	No	18-24	Non-Animal Raw Material
Circoviridae	Circovirus Type I	No	17	Porcine Trypsin

Barbara Potts, Amer. Pharma. Rev., 2011 (excerpted)

Other potential exposure to contaminants:

Upstream barriers

Asahi KASEI BIOPROCESS

<u>Irradiation</u>	HTST <u>(High-Temperature Short</u> <u>Time)</u>	<u>UVC</u>	<u>Virus Filtration</u>
Pros:Highly effectiveCost	Pros: • Cost (large scale)	Pros: • Point-of-use	Pros:Highly effectiveScalabilityEase of useMuch experience
Cons:Not point-of-useMaterial impact	Cons:High capital costsLarge footprintMaterial impact	Cons: • Scalability • Virus-dependent • Material impact	Cons: • Cost • Requires filterability

CD-CHO Media Filtration

- No impact of the virus spike on Filtration Volume
- ✓ **Consistent** performance
- 20N:
 2000 L/m² in 1 day
 5000 L/m² in 3 days

✓ BioEX:

same as 20N + 10 000 L/m² in 7 days

Konstantin Agolli, Asahi Kasei, BioInnovation 2016, Berlin, February 10th, 2016

CD-CHO Media Filtration

✓ No virus detected (↑)

 Difference in PPV LRV is due to differences in assay sensitivity

Konstantin Agolli, Asahi Kasei, BioInnovation 2016, Berlin, February 10th, 2016

Case Study - Takeda

Virus filtration can be effective for large volume media treatment

27 CONFIDENTIAL © 2021 Asahi Kasei Bioprocess

Andreas Wieser, Shire, 20th Planova Workshop, Prague, 2017

How expensive is up	stream virus filtration?	?		<u>Assumptions:</u> 60 LMH ~ 7 000 € /m ²
<u>Media Volume (L)</u>	Duration (hr)	Filtration Area (m ²)	<u>Cost/batch (€</u>)	
12 000	4	50	350 000	Longor virus filtration
12 000	24	8,3	58 333	
200	3	1,1	7 800	Smaller volumes for CGTs
10	2	0,8	2 250 *	Especially for autologous cell therapy

For smaller volumes, media filtration can be very feasible!

* Price €/m² higher for small size filters

Virus Filtration of Bacterial Fermentation Media Components

			Volumo por		PN20			BioEX		
Nr.	Media type	Concentration [g/l]	4000 Lscale [L]	Flow	Average flux [L/h/m2]	Area for 4000Lscale [m2]	Row	Average flux [L/h/m2]	Area for 4000Lscale [m2]	
1	GucoseFeed	>100	>200	decrease	<10	>50	constant	10-100	>10	
2	Vitamin solution	<50	<20	constant	10-100	<0.1	constant	>100	<0.1	
3	Salt solution	>100	20-200	constant	10-100	0.1-0.5	constant	10-100	<0.1	
4	Amino acid stock	<50	20-200	constant	10-100	<0.1	constant	10-100	<0.1	
5	Tetracydine- alcohol	<50	<20	decrease	10-100	<0.1	blocked	n.a.	n.a.	
6	Tetracydine-water	<50	<20	constant	10-100	<0.1	decrease	>100	<0.1	
7	IAA solution	<50	20-200	constant	10-100	0.1-0.5	blocked	n.a.	n.a.	
8	Tace elements solution	>100	<20	constant	10-100	<0.1	decrease	>100	<0.1	
9	Kanamycine Solution	50-100	<20	constant	10-100	<0.1	constant	>100	<0.1	
10	Fe-sulfate-stock	50-100	<20	constant	10-100	<0.1	constant	>100	<0.1	
11	Inducer	50-100	<20	constant	10-100	0.1-0.5	constant	10-100	<0.1	
12	Media solution	<50	20-200	constant	10-100	0.1-0.5	constant	>100	<0.1	
13	Sterileaddition	>100	>200	decrease	10-100	>0.5	constant	>100	>0.5	
14	Fe-chloridestock	>100	<20	constant	10-100	<0.1	constant	>100	<0.1	

Simon Haidinger, Boehringer Ingelheim, 18th Planova Workshop, Athens, 2015

□ Virus filtration is applicable/adaptable to continuous processes

- □ Virus filters are robust enough to withstand process challenges
- Several validation options are available
- □ Virus filters are scalable, it's a matter of understanding the design space

Risks for viral contamination are large

- ✓ Higher risk raw materials
- ✓ Reduced viral clearance capability
- ✓ Less overall manufacturing experience
- Virus filtration is the most effective and robust virus removal option
- Incorporating virus filtration into manufacturing processes early in development will significantly advance patient safety of CGT products

	P	Pathoger Safety	n	
Sourcing		Testing		Reduction

