Virus / Prion reduction for Large Plasma-Derived Proteins: Caprylic Acid Treatment and UV-C Irradiation

ViruSure 2nd Virus Safety Workshop, 23-Sep-2022, M. Asper

The manufacturing process of Trimodulin

Highly Confidential results:

Relevant patent information:

ViruSure 2nd Virus Safety Workshop, 23-Sep-2022, M. Asper

The manufacturing process of Trimodulin

Virus / Prion reduction for Large Plasma-Derived Proteins: Caprylic Acid Treatment and UV-C Irradiation

ViruSure 2nd Virus Safety Workshop, 23-Sep-2022, M. Asper

Virus / Prion reduction for Large Plasma Derived Proteins

Part 1: Manufacturing process of IgM (Trimodulin)

Part 2: Caprylic acid treatment Procedure and case study

Part 3: UV-C treatment Procedure and case study

Human Plasma derived proteins

Trimodulin – Virus / Prion Safety

10

From Nature for Life

Case Study: Caprylic Acid treatment virus inactivation

23-September-2022, M. Asper

Case Study: Caprylic Acid treatment Virus / Prion removal

Infectivity Assay	qPCR
> 3.7 log10	1.9 log10
	> 4.8 log10
1.7 log10	
	2.5 log10
	> 3.7 log10

Prion	In-vitro	In-vivo
PrP ^{Sc} (263K)	> 3.9 log10	6.0

23-September-2022, M. Asper

UV-adsorption spectra of Trimodulin

S. Luelf, et al., 2022, submitted

23-September-2022, M. Asper

Biotest

21

UV-C action on nucleic acids

DNA/RNA damage

Image: Wikimedia Commons

Public Domain, author garriet41

- Prominent mechanism: direct hits of purine/pyrimidine bases
- UV-C irradiation leads to covalent bonds between neighbouring Pyrimidine nucleotides
- → Formation of cyclobutane "rings":

UV-C equipment

What is needed?

1. UV-C lamp generating UV-C irradiation

2. UV-C "reactor" vessel/container where process feed is irradiated

23-September-2022, M. Asper

UV-C treatment

- Limited UV-C penetration in protein solutions
 - Exponential decay of UV intensity (W/m²)
 - E.g. at OD_{254nm} = 5.0 and depth = 2 mm: loss of 90% of UV intensity

Biotest From Nature for Life

Dean Vortices

Biotest From Nature for Life

-0.01

-0.008 -0.006 -0.004 -0.002

0.002 0.004 0.006 0.008

0 X [m]

Figure modified after Sudarsan and Ugaz (2006)

Lab scale versus process scale unit

29

Case study: UV-C irradiation for Trimodulin

UV-C irradiation of Trimodulin:

- OD_{254nm} (approximate): >3 (= protein concentration of > 6 g/L)
- UV-C dose: 100 200 J/m²

Case study: HAV in lab / process scale unit

HAV inactivation: incomplete inactivation, but effective at ≈200 J/m² (below IgM target UV-C dose)

Case study: UV-C treatment

Virus	lab scale [log ₁₀]	process scale [log ₁₀]
BVDV	2.99	
HIV	0.63	
PRV	3.76	
HAV	4.53	4.28
PPV	6.96	6.60

➔ Equivalence with process scale unit could be demonstrated

Standard conditions: 200 J/m² Mean values of different experimental runs

33

23-September-2022, M. Asper

Summary

Virus	Envelope	Caprylic acid treatment	UV-C Virus inactivation
PPV	No		T
B19V	No	5	Not performed
HAV	No	😳 😜	T
HEV	No		Not performed
BVDV	Yes		😳 😎
HIV	Yes		2
PRV	Yes		e

Virusure Team Biotest Pathogen Safety Group Biotest Development Group

Gerhard Poelsler Sebastian Luelf

Achim Hannappel Fabian Jung

marcel.asper@biotest.com