

Adapting Virus Filtration Operation to Continuous Processing Challenges

Roya Dayani Head of Product Management (Benelux, Nordics & South Europe)

1. The Pioneering Difference

- 2. Virus Filtration in Continuous Mode
- 3. Validation Strategies and Examples

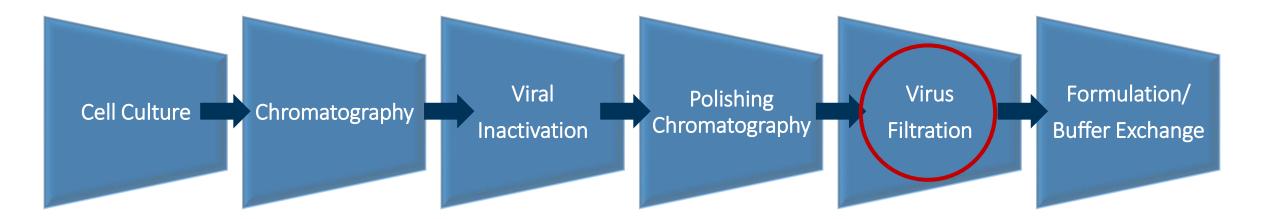
1 The Pioneering Difference

Asahi Kasei Bioprocess Portfolio

2

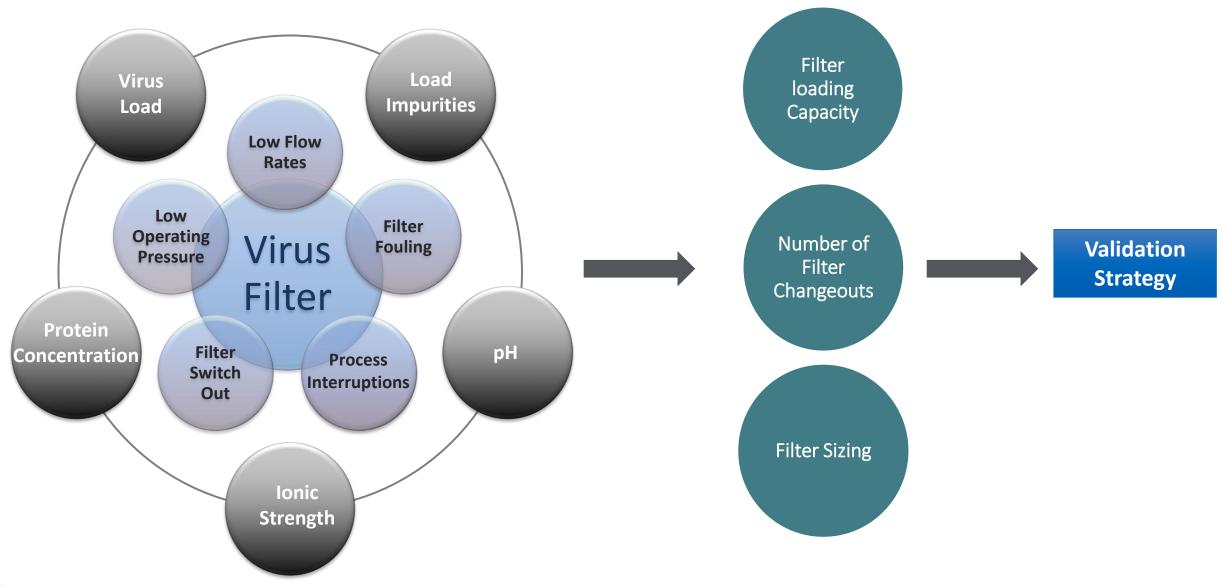
Virus Filtration in Continuous Mode

Virus Filtration



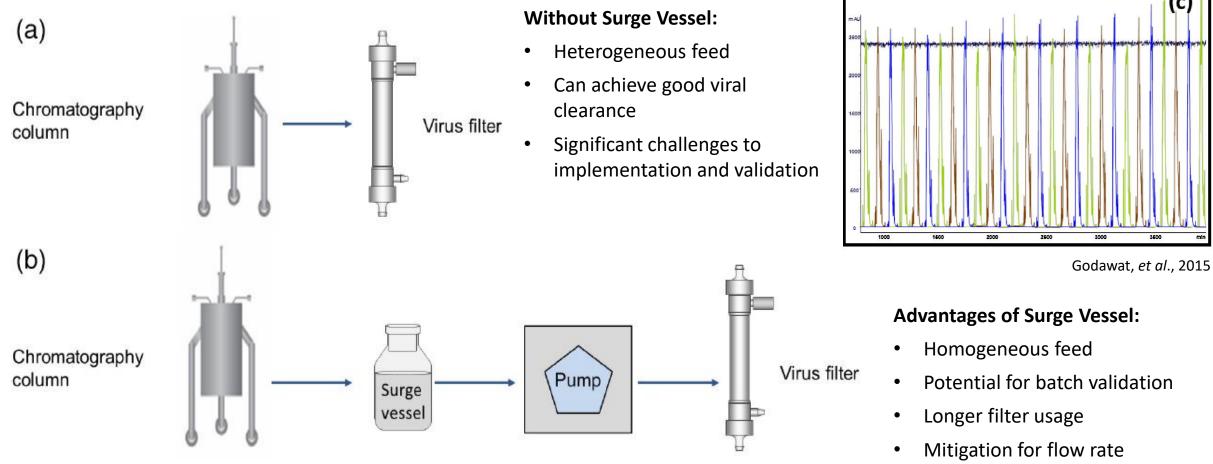
Batch mode

- High flux
- Constant pressure operation
- Throughout: 100-500 L/m²
- Duration: up to 8 hours
- Homogeneous feedstock

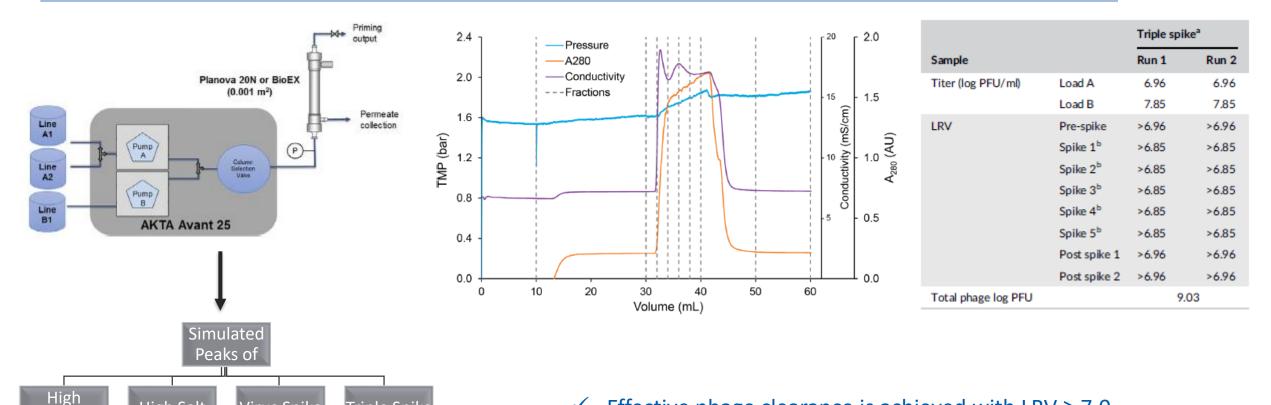

Continuous mode

- Low flux
- Constant flow operation
- Throughput: $\geq 1000 \text{ L/m}^2$
- Duration: \geq 3 days
- Homogeneous or variable feedstock

Understanding Virus Filtration in Continuous Mode



3


Validation Strategies and Examples

Output from a Continuous CEX Unit Operation

variations or deviations including process pauses

Effect of Load Variations on VF performance – Dynamic Load Model

- ✓ Effective phage clearance is achieved with LRV \ge 7.0.
- Challenges associated with inline spiking or extended spiking need further investigation.
- ✓ Is Parvovirus clearance comparable?

Load A:

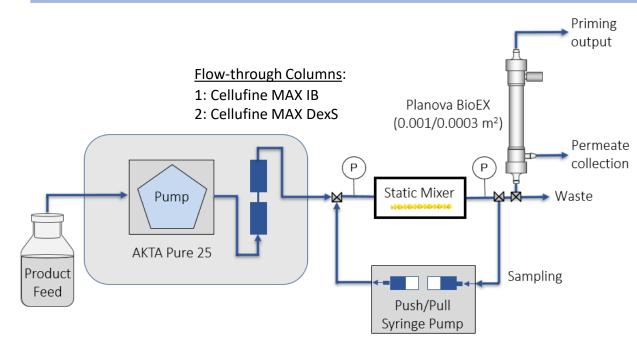
Protein

1 mg/ml h-lgG, 50 mM acetate, 20 mM sodium chloride, pH 6.0.
Target PP7 load: 10⁷ PFU/ml.

Virus Spike

Triple Spike

Load B (Triple spike):


- 10 mg/ml h-lgG, 500 mM acetate, 20 mM sodium chloride, pH 6.0.
- Target PP7 load: 10⁸ PFU/ml.

High Salt

Asahi KASEI

BIOPROCESS

Inline Spiking Using Parvovirus

<u>Conditions:</u>

- Filter: 0.0003 m² BioEX
- Protein: 2 g/L mAb
- Buffer: 20mM Tris-Acetic Acid, 10 mS/cm, pH 6.5
- PPV spike: 6 log TCID50/mL
- AKTA pump flow rate: 0.17 mL/min (34 LMH)
- Syringe pump push/pull flow rate: 3 μL/min
- Filtration time: 72 h
- Throughput: 2,400 L/m²

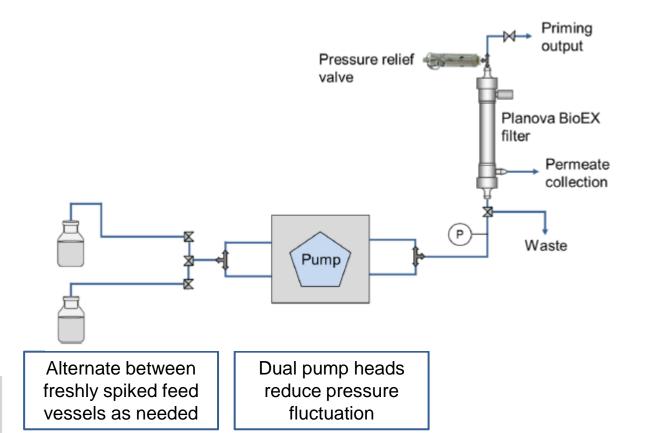
✓ Inline spiking is a validation option for stable viruses.

50

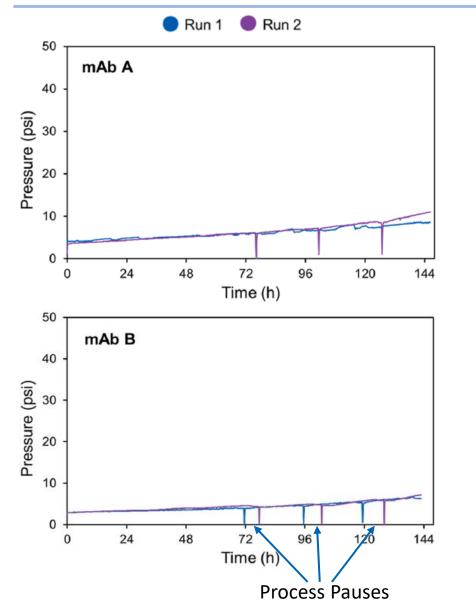
✓ More data needed for less stable viruses.

40 -				
- 00 Bressure (bsi) - 00 -				
0 20 40 60 5 Time (h)				
	mAb	Run 1	Run 2	
	Load titer (log TCID ₅₀ /mL)	6.25	6.38	
	LRV	≥ 5.5	≥ 5.7	

Asahi**KASFI**

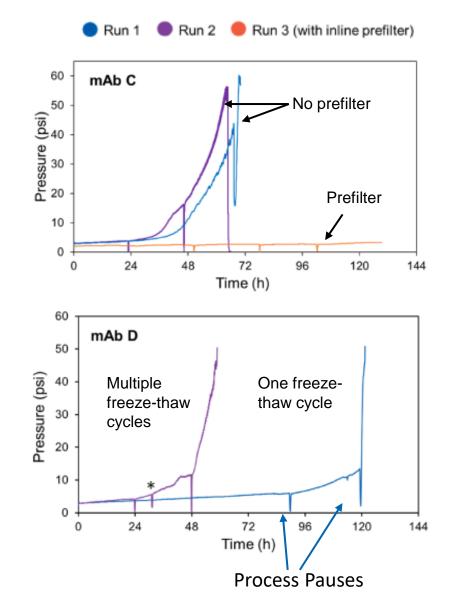

BIOPROCESS

Virus Filters Can Withstand Continuous Processing Conditions


Study Goals: (collaboration with Merck)

- Perform virus-spiked filtrations for long durations, high throughput, and low flux
- Conditions:
 - Duration: ~ 6 days
 - Throughput: 1000 L/m2
 - o Flux: 7 LMH
 - Filter: 0.001 m² Planova BioEX
 - Products: 4 mAbs
 - Virus spiking: ~6 log TCID₅₀/mL MVM

				Stabilit	ty (days)
Molecule	Concentration (g/L)	pН	Conductivity (mS/cm)	RT	4°C
mAb A	7.6	5.5	4	7	28
mAb B	10.6	4.9	15.8	7	28
mAb C	8.3	4.5	20	3	8
mAb D	6.3	5.4	22	7	14



Continuous Virus Filtration of "Easy" mAbs

Molecule	mAb A		mAb B	
Run	1	2	1	2
Throughput (L/m ²)	1000		1000	
Run duration (days)	6		6	
Number of process pauses	None	3	3	3
MVM titer (log TCID ₅₀ /mL)				
Load	5.63	5.56	5.69	5.56
Day 1	0.63	0.75	≤0.50	≤0.50
Day 2				
Day 3				
Day 4	0.63	1.13	≤0.50	≤0.50
Day 5	0.63	0.88	≤0.50	≤0.50
Day 6	1.00	1.50	≤0.50	≤0.50
Pooled permeate	≤0.50	0.75	≤0.50	≤0.50
MVM LRV				
MVM LRV	≥5.1	4.8	≥5.3	≥5.1

Continuous Virus Filtration of "Challenging" mAbs

Molecule	mAb C			mAb D)
Run	1	2	3	1	2
Throughput (L/m ²)	480	450	540	690	430
Run duration (days)	3	3	5	4	3
Number of process pauses	None	2	3	2	2
MVM titer (log TCID ₅₀ /mL)					
Load	5.75	5.79	5.53	5.81	6.04
Day 1	≤0.50	0.63	≤0.50	1.63	0.63
Day 2		1.38			1.25
Day 3		1.13	≤0.50		0.88
Day 4	-	-	≤0.50	1.50	-
Day 5	-	-	≤0.50	1.38	-
Day 6	-	-	-	-	-
Pooled permeate	-	0.88	0.63	1.63	0.88
MVM LRV					
MVM LRV	≥5.3	4.9	4.9	4.2	5.2


Planova S20N Performance Under Constant Flux

Conditions:

- Molecule: 10 g/L mAb (internal)
- Buffer Solution: 25 mM acetate, 150 mM NaCl, pH 5.0
- $\circ~$ Target throughput : 500 L/m 2
- \circ PPV spike target: 6.5 log TCID₅₀/mL
- Flux : 5 LMH
- \circ ~100 hours!

Filter Type	Run #	Filtrate PPV Titer (log ₁₀ TCID ₅₀ /mL)	LRV	
	1	1.00	5.4	
Planova S20N	2	0.75	6.1	
	3	≤ 0.73	≥ 5.8	
	1	≤ 0.73	≥ 5.7	
Planova BioEX	2	2.00	4.8	
	3	1.50	5.0	

Time [h]

Important Considerations for Successful Continuous Virus Filtration

- Filter changeout strategy:
 - Reduced changeouts allow for increased operational flexibility
 - Reduced changeouts present a higher integrity risk
- Finding the balance:
 - Filtration duration (3-7 days)
 - Filter loading/ throughput (L/m²)
 - Operating flux (LMH): can be product- dependent and affects pressure profile
- Fully vs. semi-continuous operation:
 - Fully continuous: added need for automation
 - Semi-continuous:
 - Following semi-continuous chromatography or automated upstream steps

Planova Filters in Continuous VF Application

- Planova BioEX can provide excellent MVM clearance during long duration filtrations at low flux
- Process pauses at low flux had little impact on MVM LRV
- For challenging feed streams, product-specific optimization may be needed:
 - Inline pre-filtration for unstable feed streams
 - Molecule-specific throughput (based on molecule stability or operation considerations)
 - Other filter options available to help with troubleshooting: Planova S20N

Acknowledgments

Asahi Kasei Bioprocess

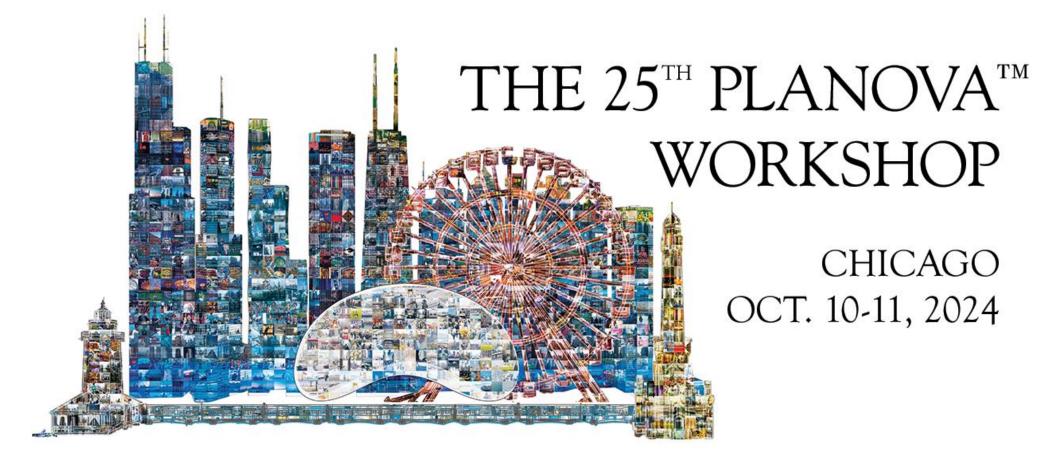
Daniel Strauss

Ioana Pintescu

Merck & Co.

William Rayfield

Adrian Gospodarek


Mark Brower

FDA

Scott Lute Sarah Johnson Kurt Brorson (now Parexel)

Thank You

